GENERAL INSTRUCTIONS:

i) Attempt all the questions.
ii) Section - A consists of 4 questions of 1 mark each.
iii) Section-B consists of 8 questions of 2 marks each.
iv) Section- C consists of 11 questions of 4 marks each.
v) Section- D consists of 6 questions of 6 mark each.

SECTION - A

1. Evaluate: $\tan ^{-1} 1+\cot ^{-1}\left(-\frac{1}{\sqrt{3}}\right)+\sin ^{-1}\left(-\frac{1}{2}\right)$.
2. If $A=\left[\begin{array}{cc}-3 & 0 \\ 0 & -3\end{array}\right]$ find A^{4}.
3. If $\mathrm{A}=\left\lfloor a_{i j}\right\rfloor$ is a 2×2 matrix such that $a_{i j}=\mathrm{i}^{2}-\mathrm{j}^{2}$, write A .
4. If A is a square matrix of order 3 and $|2 A|=\mathrm{k}|A|$. Find the value of k .

SECTION - B

5. Evaluate: $\int \frac{\sin x}{\sin (x+a)} d x$.
6. Prove that the diagonal elements of a skew symmetric matrix are all zeroes.
7. Write $\tan ^{-1} \frac{\cos x}{1+\sin x}$ in the simplest form where $-\frac{3 \pi}{2}<\mathrm{x}<\frac{3 \pi}{2}$.
8. If $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$ and $A^{2}-5 A+7 I=0$, then find A^{-1} using the given equation.
9. If $\sqrt{x}+\sqrt{y}=1$, prove that $\frac{d y}{d x}$ at $\left(\frac{1}{4}, \frac{1}{4}\right)$ is -1 .
10. Evaluate: $\sin \left(3 \sin ^{-1} 0.4\right)$.
11. In a departmental store, a customer X purchases 2 packets of tea, 4 kg of rice and 5 dozen oranges. Customer Y purchases 1 packet of tea, 5 kg of rice and 24 oranges. Price of one packet of tea is Rs. 54, 1 kg of rice is Rs. 22 and that of 1 dozen of oranges is Rs. 27. Use matrix method to solve each individual bill.
12. If $\mathrm{y}=e^{m \sin ^{-1} x}$, then show that $\left(1-\mathrm{x}^{2}\right) \mathrm{y}_{2}-\mathrm{xy}_{1}-\mathrm{m}^{2} \mathrm{y}=0$.

SECTION - C

13. Evaluate: $\int \frac{2 x^{2}}{\left(x^{2}-1\right)\left(x^{2}+4\right)} \mathrm{dx}$.
14. Evaluate: $\int_{0}^{\frac{\pi}{2}} \log \sin x d x$.
15. Evaluate: $\int \frac{d x}{3 \sin ^{2} x+4 \cos ^{2} x}$
(OR) $\int \frac{d x}{\sin x+\cos x}$
16. Evaluate: $\int \frac{6 x+7}{\sqrt{(x-5)(x-4)}} \mathrm{dx}$.
17. Find the points on the curve $y=x^{3}$ at which the slope of the tangent is equal to the y-coordinate of the point.

Prove that the curves $x=y^{2}$ and $x y=k$ cut at right angles if $8 k^{2}=1$.
18. A water tank has the shape of an inverted right circular cone with its axis vertical and vertex lowermost. Its semi vertical angle is $\tan ^{-1} 0.5$. Water is poured into it at a constant rate of 5 cubic metres per hour. Find the rate at which the level of the water is rising at the instant when the depth of water in the tank is 4 m . What is the importance of conservation of water?
19. Find inverse of matrix A using column elementary operations where $A=\left[\begin{array}{ll}2 & -6 \\ 1 & -2\end{array}\right]$.
20. Solve for $\mathrm{x}: \cos ^{-1} \frac{x^{2}-1}{x^{2}+1}+\tan ^{-1} \frac{2 x}{x^{2}-1}=\frac{2 \pi}{3}$.
21. Prove that $\tan ^{-1} \frac{1-x}{1+x}-\tan ^{-1} \frac{1-y}{1+y}=\sin ^{-1} \frac{y-x}{\sqrt{1+x^{2}} \sqrt{1+y^{2}}}$.
(OR)
Prove that: $\tan \left(\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} \frac{a}{b}\right)+\tan \left(\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} \frac{a}{b}\right)=\frac{2 b}{a}$.
22. If $y=(x \cos x)^{x}+(\sin x)^{\frac{1}{x}}$, find $d y / d x$.
23. If $A=\left[\begin{array}{cc}1 & \tan x \\ -\tan x & 1\end{array}\right]$ Show that $A^{\prime} A^{-1}=\left[\begin{array}{cc}\cos 2 x & -\sin 2 x \\ \sin 2 x & \cos 2 x\end{array}\right]$.

SECTION - D

24. Evaluate: $\int_{-1}^{4}\left(x^{2}-x\right) \mathrm{dx}$ using limit as a sum.
25. Evaluate: $\int\left[\log (\log x)+\frac{1}{(\log x)^{2}}\right] d x$.
(OR) Evaluate: $\int \sqrt{\tan x} d x$.
26. Show that the height of the cylinder of greatest volume that can be inscribed in a right circular cone of height h and semi vertical angle \propto is one third that of the cone and greatest volume of the cylinder is $\frac{4}{27} \pi h^{3} \tan ^{2} \propto$.
27. Find the sub intervals for which $y=\frac{4 \sin \theta}{2+\cos \theta}-\theta$ is increasing or decreasing function of θ in $\left[0, \frac{\pi}{2}\right]$.
28. Using properties of determinants prove that:

$$
\left|\begin{array}{ccc}
(y+z)^{2} & x y & z x \\
x y & (x+z)^{2} & y z \\
x z & y z & (x+y)^{2}
\end{array}\right|=2 x y z(x+y+z)^{3}
$$

(OR)
If $\mathrm{p} \neq 0, \mathrm{q} \neq 0$ and $\left|\begin{array}{ccc}p & q & p \propto+q \\ q & r & q \propto+r \\ p \propto+q & q \propto+r & 0\end{array}\right|=0$ then using the properties of
determinants, prove that atleast one of the following statements is true: (i) p, q, r are in G.P (ii) α is the root of the equation $p x^{2}+2 q x+r=0$.
29. If $(x-a)^{2}+(y-b)^{2}=c^{2}$ for some $c>0$. Prove that $\frac{\left[1+\left(\frac{d y}{d}\right)^{2}\right]^{\frac{5}{2}}}{\frac{d^{2} y}{d x^{2}}}$ is independent of a and b.
(OR)
If $x=a \sin 2 t(1+\cos 2 t)$ and $y=b \cos 2 t(1-\cos 2 t)$, show that $\frac{d y}{d x}$ is $\frac{b \tan t}{a}$.

