Q.11. A family has 2 children. Find the probability that both are boys, if it is known that
(i) at least one of the children is a boy,
(ii) the elder child is a boy. 4 marks
Q.12. Show that the relation S in the set $A=\{x \in Z: 0 \quad \leq$ gixen ty 12 $\}$
$S=(a\{) b \quad a, b \notin \mathscr{Z},-\mid$ isbdivisible by 4$\}$ is an equivalence relation. Find the set of all elements related to 1.4 marks
Q.13. Prove the following: 4 marks

$$
\tan ^{-1} x+\tan \left(\frac{2 x}{1--^{2}}\right)_{x}=\tan \left(\frac{3 x-{ }^{3}}{1-{ }^{2} 3}\right) x
$$

OR
Prove the following:

$$
\cos \left[\tan ^{-1}\left\{\sin \left(\cot ^{-1} x\right)\right\}\right]=\sqrt{\frac{1++^{2}}{2++^{2}} \cdot x} \cdot x
$$

Q.14. Express the following matrix as the sum of a symmetric and a skew symmetric matrix, and verify your result: 4 marks

$$
\left(\begin{array}{ccc}
3 & -2 & -4 \\
3 & -2 & -5 \\
-1 & 1 & 2
\end{array}\right)
$$

 magnitude 6 unis which is parallel to the vector $\mathbf{2} \overrightarrow{\boldsymbol{a}}-\overrightarrow{\boldsymbol{u}} \boldsymbol{\boldsymbol { c }} 4$ marks

OR
 \vec{d} which is perpendicular to both \vec{a} and \vec{b} and $\vec{c} . \vec{d} \mid$
Q.16. find the points on the line 4 marks
$\frac{x+}{3}=\frac{2 y+}{2}=\frac{1 z-}{2}$ at a distance of 5 units from the point $P(1,3)$,
OR
Find the distance of the point $P(6,5,9)$ from the plane determined by the point A $(3,-1,2), B(5,2,4)$ and $C(-1,-1,6)$.
Q.17. Solve the following differential equation: 4 marks

$$
\begin{gathered}
\left(x^{2}-\right)\left[\frac{d y}{d x}+\quad 2 x y \frac{1}{x^{2}}-1|x| \neq 1\right. \\
\text { OR }
\end{gathered}
$$

Solve the following differential equation:

$$
\begin{aligned}
& \sqrt{1++^{2} \not x^{2} y+x^{2} y^{2}}+x \frac{d y}{d x}=0 . \\
& \left.\therefore \sqrt{1+^{2}} \nexists \quad \sqrt{1+^{2}} \not \approx \frac{1}{2} \log \frac{\sqrt{1++^{2}} \not x}{\sqrt{1++^{2}} \nexists}\right|_{1} ^{1}+c .
\end{aligned}
$$

Q.18. Show that the differential equation $\left(\begin{array}{ll}x & -\end{array}\right) \frac{d y}{d x}=x \quad+$ is2mamogeneous and solve it. 4 marks
Q. 19. Evaluate the following: 4 marks

$$
\int \frac{x+2}{\sqrt{(x-)(\boldsymbol{x}-)}} d x
$$

Q.20. Evaluate the following: 4 marks

$$
\int_{1}^{2} \frac{5 x^{2}}{x^{2}+4 x}+d x .
$$

Q.21. If $y={ }^{a} \operatorname{sic}^{-1} x,-1 \leq x \leq 1$, then shownthat

$$
\left(\begin{array}{ll}
1 & -{ }^{2}
\end{array}\right) \frac{d^{2} y}{d x^{2}}-\stackrel{d y}{x}-\quad 2 y=0
$$

Q. 22. IF

$$
y=\bar{c} 0\left\{\frac{3 x+\sqrt{4-2}}{5}\right)^{x}, \quad \underset{d x}{d y} .
$$

SECTION - C

Question numbers 23 to 29 carry 6 marks each.

Q. 23. Using properties of determinants, prove the following: 6 marks

$$
\begin{aligned}
& \left\lvert\, \begin{array}{llll}
x & x^{2} & 1 & +3 p x \\
y & y^{2} & 1 & +{ }^{3} p y \\
z & z^{2} & 1 & { }^{3} p z
\end{array}\right. \\
& =(1+P x) x z-)(y-1)(z-) \cdot x
\end{aligned}
$$

OR

Find the inverse of the following matrix using elementary operations:

$$
A=-1\left(\begin{array}{cc}
2 & -2 \\
3 & 0 \\
-2 & 1
\end{array}\right)
$$

Q.24. A bag contains 7 red, 4 white and 5 black balls. Two balls are drawn at random, from the bag. What is the probability that both the balls are white? 6 marks
Q.25. One kind of cake requires 300 g of flour and 15 g of fat, another kind of cake requires 150 g of flour and 30 g of fat. Find the maximum number of cakes which can be made from 7.5 kg of flour and 600 g of fat, assuming that there is no shortage of the other ingredients used in making the cakes. Make it as an L.P.P. and solve it graphically. 6 marks
Q.26. Find the coordinates of the foot of the perpendicular and the perpendicular distance of the point $P(3,2,1)$ from the plane $2 x-y+z$ Find also, the image of the point in the plane. 6 marks
Q.27. Find the area of the circle $4 x^{2}+4 y=\quad$ ohich is interior to the parabola $\boldsymbol{x}^{2}=\mathbf{4 y}$ marks

OR

Using integration, find the area of the triangle $A B C$, coordinates of whose vertices are $A(4,1) B(6,6)$ and $C(8,4)$.
Q.28. If the length of three sides of a trapezium other than the base is 10 cm each, find the area of the trapezium, when it is maximum. 6 marks
Q.29. Find the interval in which the following function $f(x)=20-9 x^{2}+{ }^{3} 6 x$
(a) strictly increasing,
(b) strictly decreasing. 6 marks

