Class 11

8-8-2016
Second Unit Test (First Term) in PHYSICS

1. Draw the position-time graph for two objects moving along straight line in positive x direction with their relative velocity positive.
2. Under what condition the average velocity of the object is equal to the instantaneous velocity?
3. Using calculus method, derive the following equation:
$\mathrm{S}=\mathrm{ut}+1 / 2 \mathrm{at}^{2}$, where the symbols have their usual meanings.
4. An object is thrown vertically upwards with certain velocity and then caught by the thrower after some time. Sketch velocity - time graph and the corresponding position -time graph.
5. On a 60 km track, a train travels the first 30 km with uniform speed of $30 \mathrm{~km} / \mathrm{h}$. How fast must the train travel the next 30 km so as to have average speed of $40 \mathrm{~km} / \mathrm{h}$ for the entire trip?
6. Derive the relation:
$S_{\text {nth }}=u+\frac{a}{2}(2 n-1)$
Where $\mathrm{S}_{\mathrm{nth}}$ is the distance travelled in nth second.
7. Two buses A and B are at positions 50 m and 100 m from the origin at time $t=0$. They start moving in the same direction simultaneously with uniform velocity of $10 \mathrm{~m} / \mathrm{s}$ and $5 \mathrm{~m} / \mathrm{s}$ respectively. Determine the time and position at which A overtakes B. (2)
8. Two trains 1200 m and 800 m in length are running in opposite direction with velocities $42 \mathrm{~km} / \mathrm{h}$ and $30 \mathrm{~km} / \mathrm{h}$. In what time they will completely cross each other.
9. (i) If the position of the object is given by $x=3 t^{2}-6 t+2$ where ' x ' is position in meter and ' t ' is time in seconds. Calculate the velocity and acceleration when $\mathrm{t}=2 \mathrm{~s}$.
(ii) The velocity of a particle changes by the relation $\mathrm{v}=(5 \mathrm{t}-3) \mathrm{m} / \mathrm{s}$. Calculate the position when $t=3 \mathrm{~s}$. Gvien that $\mathrm{x}(0)=-5 \mathrm{~m}$
10. A stone thrown upwards from the top of the tower 85 m high, reaches the ground in 5 s . Find (i) the greatest height above the ground (ii) the velocity with which it reaches the ground (iii) the time taken to reach the maximum height. Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.
