\square

Time: 3 Hours
Total Marks: 100
Note: 1. Attempt all Sections. All the symbols have their usual meaning.

SECTION A

1. Attempt all questions in brief.

Qno.	Question	Marks	CO
a.	What is the cardinality of the set? Find the cardinality of the set $\{1,\{2, \phi,\{\phi\}\},\{\phi\}\}$.	2	1
b.	Let the two following functions be defined on set of real numbers be as: $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+3$ and $\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}+1$. Find the (fog)(x).	2	1
c.	Define the well-ordered set? Give an example of well-ordered set.	2	2
d.	Draw the Hasse diagram of the lattice of $(\mathrm{D} 6, \mid)$.	2	2
e.	Define Tautology and Contradiction.	2	3
f.	Discuss the truth table of $p \leftrightarrow q$.	2	3
g.	What is the generator of a cyclic group?	2	4
h.	Find the order of each element in the group $(\{1,-1\},).$.	2	4
i.	Find the number of handshakes in party of 12 people, where each two of them shake hands with each other.	2	5
j.	Discuss the pigeonhole principle?	2	5

SECTION B

2. Attempt any three of the following:

Qno.	Question	Marks	CO
a.	Prove that the relation $(\mathrm{x}, \mathrm{y}) \in \mathrm{R}$, if $\mathrm{x} \geq \mathrm{y}$ defined on the set of positive integers is a partial order relation.	10	1
b.	If $\mathrm{B}=\{1,3,5,15\}$, then show that $\left(B,+, .,,^{\prime}\right)$ is a Boolean Algebra, where $\mathrm{a}+\mathrm{b}=\mathrm{cm}(\mathrm{a}, \mathrm{b}), \mathrm{a} \cdot \mathrm{b}=\mathrm{gcd}(\mathrm{a}, \mathrm{b})$ and $a^{\prime}=\frac{15}{a}$.	10	2
c.	(i) Prove that conditional proposition and its contrapositive are equivalent, i.e. $(p \rightarrow q) \equiv \sim q \rightarrow \sim p$. (ii) Prove the equivalence: $(p \rightarrow q) \rightarrow q \equiv p \vee q$	10	3
d.	Show that set $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$ forms a group with respect to addition modulo 6.	10	4
e.	(i) State all PEANO's axioms. (ii)In how many ways, can 7 boys and 5 girls be seated in a row, so that no two girls may sit together?	10	5

SECTION C

3. Attempt any one part of the following:

Qno.	Question	Marks	CO
a.	In a survey of 60 people, it was found that 25 eatApple, 26 eatOrange and 26 eatBanana fruit. Also 9 eat both Apple and Banana, 11 eat both	10	1
Orangeand Apple, and 8 eat both Orangeand Banana. 8eat no fruit at all. Then determine i. the number of people who eat all three fruit. ii. the number of people who eat exactly two fruit.			

Roll No: \square
MCA
(SEM I) THEORY EXAMINATION 2021-22
DISCRETE MATHEMATICS

	iii. the number of people who eat exactly one fruit		
b.	State and Prove De Morgan's laws for set theory.	10	1

4. Attempt any one part of the following:

Qno.	Question	Marks	CO
a.	(i)Write the definition of the maximal, minimal, greatest and least element of a Poset. (ii)If $S=\{10,11,12\}$. Determine the power set of S. Draw the Hasse diagram of Poset $(\mathrm{P}(\mathrm{S}), \subseteq)$. (iii)Find the maximal, minimal, greatest and least element of the Poset in Part (ii).	10	2
b.	i) Determine the DNF of Boolean expression $f(x, y, z)=x+y^{\prime} . z$ ii) Simplify the following Boolean expression using K-Map method: $A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B^{\prime} C+A^{\prime} B C+A^{\prime} B C^{\prime}+A B^{\prime} C+A B C$.	10	2

5. Attempt any one part of the following:

Qno.	Question		
a.	(i) Given the value of $p \rightarrow q$ is false, determine the value of $(\sim p \vee \sim q) \rightarrow q$. $(i i)$ Prove the equivalence: $(p \rightarrow q) \rightarrow q \equiv p$	Marks	CO
b.	State and Prove De Morgan's laws for propositions using truth table.	100°	3

6. Attempt any one part of the following:

Qno.	Question	Marks	CO
a.	Show that set of all integers \mathbb{Z} forms a group with respect to binary operation * defined as $\mathrm{a} * \mathrm{~b}=\mathrm{a}+\mathrm{b}+1$, where $\mathrm{a}, \mathrm{b} \in \mathbb{Z}$.	10	4
b.	(i)Define Ring and Field. Give an example of a Ring and a Field. (ii)Prove that every cyclic group is abelian.	10	4

7. Attempt any one part of the following:

Qno.	Question		
a.	State Mathematical Induction. Using the Mathematical Induction, show that $1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}, n \geq 1$.	10	Marks
CO			
b.	Use generating functions to solve the recurrence relation, $a_{n}-9 a_{n-1}+20 a_{n-2}=0$ where $a_{o}=-3$ and $a_{1}=-10$.	10	5

