AIEEE

- 76. Which of the following sets of quantum numbers is correct for an electron in 4f orbital?
 - (1) n = 4, I = 3, m = +4, s = + $\frac{1}{2}$
- (2) n = 3, I = 2, m = -2, S = $+\frac{1}{2}$
- (3) n = 4, I = 3, m = +1, s = + $\frac{1}{2}$
- (4) n = 4, I = 4, m 4, s = $-\frac{1}{2}$
- **Ans.** n =4, I = 3, m = +1, s = + $\frac{1}{2}$
- 77. Consider the ground state of Cr atom (Z = 24). The number of electrons with the azimuthal quantum numbers I = 1 and 2 are respectively
 - (1) 12 and 4

(2) 16 and 5

(3) 16 and 4

(4) 12 and 5

- Ans. 12 and 5
- 78. Which one the following ions has the highest value of ionic radius?
 - (1) Li⁺

(2) F⁻

 $(3) O^{2}$

 $(4) B^{3+}$

- Ω^{2-} Ans.
- 79. The wavelength of the radiation emitted, when in hydrogen atom electron falls from infinity to stationary state 1, would be (Rydberg constant = 1.097×10⁷ m⁻¹)
 - (1) 91 nm

(2) 9.1×10⁻⁸ nm

(3) 406 nm

(4) 192 nm

- Ans. 91 nm
- 80. The correct order of bond angles (smallest first) in H₂S, NH₃, BF₃ and SiH₄ is
 - (1) $H_2S < SiH_4 < NH_3 < BF_3$
- (2) $H_2S < NH_3 < BF_3 < SiH_4$
- (3) $H_2S < NH_3 < SiH_4 < BF_3$
- (4) $NH_3 < H_2S < SiH_4 < BF_3$

- $H_2S < NH_3 < SiH_4 < BF_3$ Ans.
- 81. Which one the following sets of ions represents the collection of isoelectronic species?
 - (1) K⁺, Ca²⁺, Sc³⁺, Cl⁻ (3) K⁺, Cl⁻, Mg²⁺, Sc³⁺

(2) Na⁺, Mg²⁺, Al³⁺, Cl⁻ (4) Na⁺, Ca²⁺, Sc³⁺, F⁻

- K⁺, Ca²⁺, Sc³⁺, Cl⁻ Ans.
- 82. Among Al₂O₃, SiO₂, P₂O₃ and SO₂ the correct order of acid strength is
 - (1) $SO_2 < P_2O_3 < SiO_2 < Al_2O_3$
- (2) $Al_2O_3 < SiO_2 < P_2O_3 < SO_2$
- (3) $Al_2O_3 < SiO_2 < SO_2 < P_2O_3$
- (4) $SiO_2 < SO_2 < Al_2O_3 < P_2O_3$
- $Al_2O_3 < SiO_2 < P_2O_3 < SO_2$ Ans.
- 83. The bond order in NO is 2.5 while that in NO⁺ is 3. Which of the following statements is true for these two species?
 - (1) Bond length in NO⁺ is greater than in NO
 - (2) Bond length is unpredictable
 - (3) Bond length in NO⁺ in equal to that in NO
 - (4) Bond length in NO is greater than in NO⁺

Ans. Bond length in NO is greater than in NO⁺

84. The formation of the oxide ion O²-(g) requires first an exothermic and then an endothermic step as shown below

$$O(g) + e^{-}O^{-}(g)\Delta H^{\circ} = -142 \text{kJmol}^{-1}$$

$$O^{-}(g) + e^{-}O^{2-}(g)\Delta H^{\circ} = 844 \text{ kJmol}^{-1}$$

- (1) Oxygen is more electronegative
- (2) O ion has comparatively larger size than oxygen atom
- (3) O ion will tend to resist the addition of another electron
- (4) Oxygen has high electron affinity

Ans. O ion will tend to resist the addition of another electron

85. The states of hybridization of boron and oxygen atoms in boric acid (H₃BO₃) are respectively

(1) sp^2 and sp^2

(2) sp³ and sp³

(3) sp³ and sp²

(4) sp² and sp³

Ans. sp^2 and sp^3

86. Which one of the following has the regular tetrahedral structure?

(1) XeF₄

(2) $[Ni(CN)_4]^{2}$

(3) BF₄

(4) SF₄

Ans. BF₄

87. Of the following outer electronic configurations of atoms, the highest oxidation state is achieved by which one of them?

 $(1) (n - 1)d^{8}ns^{2}$

(2) $(n-1)d^5ns^2$

 $(3) (n-1)d^3ns^2$

(4) (n-1)d⁵ns⁻¹

Ans. $(n-1)d^5ns^2$

88. As the temperature is raised from 20°C to 40°C, the average kinetic energy of neon atoms changes by a factor of which of the following?

 $(1) \frac{1}{2}$

(2) 2

(3) $\frac{313}{293}$

(4) $\sqrt{\frac{313}{293}}$

Ans. $\frac{313}{293}$

89. The maximum number of 90° angles between bond pair of electrons is observed in

(1) dsp³ hybridization

(2) sp³d² hybridization

(3) dsp² hybridization

(4) sp³d hybridization

Ans. sp³d² hybridization

90. Which one of the following aqueous solutions will exhibit highest boiling point?

(1) 0.01 M Na₂SO₄

(2) 0.015 M glucose

(3) 0.015 M urea

(4) 0.01 M KNO₃

Ans. 0.01 M Na₂SO₄

91. Which among the following factors is the most important in making fluorine the strongest oxidizing halogen?

(1) Electron affinity (2) Bond dissociation energy (3) Hydration enthalpy (4) Ionization enthalpy **Ans.** Bond dissociation energy 92. In Vander Waals equation of state of the gas law, the constant 'b' is a measure of (1) intermolecular repulsions (2) intermolecular collisions per unit volume (3) Volume occupied by the molecules (4) intermolecular attraction Ans. Volume occupied by the molecules 93. The conjugate base of H₂PO₄ is (1) PO_4^3 (2) HPO₄²-(3) H₃PO₄ $(4) P_2O_5$ Ans. HPO₄²-6.02×10²⁰ molecules of urea are present in 100 ml of its solution. The concentration of urea 94. solution is (1) 0.001 M (2) 0.1 M (3) 0.02 M (4) 0.01 M **Ans.** 0.01 M 95. To neutralize completely 20 mL of 0.1 M aqueous solution of phosphorous acid (H₃PO₃), the volume of 0.1 M aqueous KOH solution required is (1) 10 mL (2) 60 mL (3) 40 mL (4) 20 mL 40 mL Ans. 96. For which of the following parameters the structural isomers C₂H₅OH and CH₃OCH₃ would be expected to have the same values? (Assume ideal behaviour) (1) Heat of vaporization (2) Gaseous densities at the same temperature and pressure (3) Boiling points (4) Vapour pressure at the same temperature **Ans.** Gaseous densities at the same temperature and pressure 97. Which of the following liquid pairs shows a positive deviation from Raoult's law? (1) Water – hydrochloric acid (2) Acetone - chloroform (3) Water – nitric acid (4) Benzene – methanol Ans. Benzene – methanol 98. Which one of the following statements is false? (1) Raoult's law states that the vapour pressure of a components over a solution is

(2) Two sucrose solutions of same molality prepared in different solvents will have the same

(3) The correct order of osmotic pressure for 0.01 M aqueous solution of each compound is

(4) The osmotic pressure (π) = MRT, where M is the molarity of the solution

proportional to its mole fraction

BaCl₂ > KCl > CH₃COOH > sucrose

freezing point depression

temperature is

Alls.	freezing point depression	pared in different solvents will have the same
99.	What type of crystal defect is indicated in the Na ⁺ Cl ⁻ Na ⁺ Cl ⁻ Na ⁺ Cl ⁻ Cl ⁻ Cl ⁻ Na ⁺ Na ⁺ Cl ⁻ Cl ⁻ Na ⁺ Cl ⁻ Cl ⁻ Na ⁺ Na ⁺ Cl ⁻ Na ⁺ Na	(2) Frenkel and Schottky defects
	(3) Interstitial defect	(4) Schottky defect
Ans.	Schottky defect	
100.	An ideal gas expands in volume from 1×10^{-1} pressure of 1×10^{5} Nm ⁻² . The work done is (1) -900 J (3) 2780 kJ	3 m ³ to 1×10 ⁻² m ³ at 300 K against a constant (2) 900 kJ (4) -900 kJ
Ans.	-900 J	
101.	In hydrogen – oxygen fuel cell, combustion of hydrogen occurs to (1) generate heat (2) remove adsorbed oxygen from electrode surfaces (3) produce high purity water (4) create potential difference between the two electrodes	
Ans.	create potential difference between the two electrodes	
102.	In first order reaction, the concentration of t minutes. The time taken for the concentration (1) 30 minutes (3) 7.5 minutes	ne reactant decreases from 0.8 M to 0.4 M in 15 on to change from 0.1 M to 0.025 M is (2) 60 minutes (4) 15 minutes
Ans.	30 minutes	
103.	What is the equilibrium expression for the re (1) $Kc = [P_4O_{10}] / P_4] [O_2]^5$ (3) $Kc = [O_2]^5$	eaction $P_{4(s)}$ +5 $O_{2(g)}$ $P_4O_{10(s)}$? (2) Kc = 1/[O_2] ⁵ (4) Kc = [P_4O_{10}] / 5[P_4][O_2]
Ans.	$Kc = 1/[O_2]^5$	
104.	04. For the reaction, $CO(g) + Cl_2(g)$ $COCl_2(g)$ the $\frac{K_p}{K_c}$ is equal to	
	(1) $\frac{1}{RT}$	(2) 1.0
	(3) √RT	(4) RT
Ans.	1 RT	
105.	The equilibrium constant for the reaction N_2 4×10^{-4} . The value of Kc for the reaction NO	$(g) + O_2(g)$ \longrightarrow 2NO(g) at temperature T is (g) \longrightarrow $\frac{1}{2}N_2(g) + \frac{1}{2}O_2(g)$ at the same

(1)	2.5×1	0^2
1 - 1		

(2) 0.02

$$(3) 4 \times 10^{-4}$$

(4) 50

50 Ans.

- 106. The rate equation for the reaction $2A + B \longrightarrow C$ is found to be: rate k[A][B]. The correct statement in relation to this reaction is that the
 - (1) unit of K must be s⁻¹
 - (2) values of k is independent of the initial concentration of A and B
 - (3) rate of formation of C is twice the rate of disappearance of A
 - (4) $t_{1/2}$ is a constant
- Ans. values of k is independent of the initial concentration of A and B
- 107. Consider the following E° values

$$E^{\circ}_{Fe^{3+}/Fe^{2+}} = 0.77 \text{ V}$$

$$E^{\circ}_{Sn^{2+}/Sn} = -0.14V$$

Under standard conditions the potential for the reaction

$$Sn(s) + 2Fe^{3+}(aq) \longrightarrow 2Fe^{2+}(aq) + Sn^{2+}(aq)$$
 is

Ans. 0.91 V

The molar solubility product is K_{sp} . 's' is given in terms of K_{sp} by the relation (1) $s = \left(\frac{K_{sp}}{128}\right)^{1/4}$ (2) $s = \left(\frac{K_{sp}}{256}\right)^{1/5}$ 108.

(1)
$$s = \left(\frac{K_{sp}}{128}\right)^{1/4}$$

(2)
$$s = \left(\frac{K_{sp}}{256}\right)^{1/5}$$

(3)
$$s = (256K_{sp})^{1/5}$$

(4)
$$s = (128K_{sp})^{1/4}$$

$$\textbf{Ans.} \quad s = \left(\frac{K_{sp}}{256}\right)^{1/5}$$

- 109. The standard e.m.f of a cell, involving one electron change is found to be 0.591 V at 25°C. The equilibrium constant of the reaction is $(F = 96,500 \text{ C mol}^{-1})$: $R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$
 - $(1) 1.0 \times 10^{1}$

 $(2) 1.0 \times 10^{30}$

(3) 1.0×10^{10}

 $(4) 1.0 \times 10^5$

Ans. 1.0×10^{10}

- The enthalpies of combustion of carbon and carbon monoxide are -393.5 and -283 kJ mol⁻¹ 110. respectively. The enthalpy of formation of carbon monoxide per mole is
 - (1) 110.5 kJ

(2) -110.5 kJ

(3) -676.5 kJ

(4) 676.5 kJ

Ans. -110.5 kJ

- The limiting molar conductivities Λ° for NaCl, KBr and KCl are 126, 152 and 150 S cm² mol⁻¹ 111. respectively. The Λ° for NaBr is
 - (1) 128 S cm² mol⁻¹

(2) 302 S cm² mol⁻¹

(3) 278 S cm² mol⁻¹

(4) 176 S cm² mol⁻¹

Ans.	128	S cm	n ² mol ⁻¹
Alio.	120	0 01	1 11101

- 112. In a cell that utilises the reaction $Zn(s) + 2H^{+}(aq) \longrightarrow Zn^{2+}(aq) + H_{2}(g)$ addition of $H_{2}SO_{4}$ to cathode compartment, will
 - (1) lower the E and shift equilibrium to the left
 - (2) increases the E and shift equilibrium to the left
 - (3) increase the E and shift equilibrium to the right
 - (4) Lower the E and shift equilibrium to the right
- Ans. increase the E and shift equilibrium to the right
- 113. Which one the following statement regarding helium is incorrect?
 - (1) It is used to fill gas balloons instead of hydrogen because it is lighter and non inflammable
 - (2) It is used in gas cooled nuclear reactors
 - (3) It is used to produce and sustain powerful superconducting reagents
 - (4) It is used as cryogenic agent for carrying out experiments at low temperatures
- Ans. It is used to fill gas balloons instead of hydrogen because it is lighter and non inflammable
- 114. Identify the correct statements regarding enzymes
 - (1) Enzymes are specific biological catalysts that can normally function at very high temperature (T ~ 1000 K)
 - (2) Enzymes are specific biological catalysts that the posses well defined active sites
 - (3) Enzymes are specific biological catalysts that can not be poisoned
 - (4) Enzymes are normally heterogeneous catalysts that are very specific in their action
- **Ans.** Enzymes are specific biological catalysts that the posses well defined active sites
- 115. One mole of magnesium nitride on the reaction with an excess of water gives
 - (1) one mole of ammonia
- (2) two moles of nitric acid
- (3) two moles of ammonia
- (4) one mole of nitric acid

- Ans. two moles of ammonia
- 116. Which one of the following ores is best concentrated by froth floatation method?
 - (1) Magnetite

(2) Malachite

(3) Galena

(4) Cassiterite

- Ans. Galena
- 117. Beryllium and aluminium exhibit many properties which are similar. But the two elements differ in
 - (1) exhibiting maximum covalency in compound
 - (2) exhibiting amphoteric nature in their oxides
 - (3) forming covalent halides
 - (4) forming polymeric hydrides
- **Ans.** exhibiting maximum covalency in compound
- 118. Aluminium chloride exists as dimer, Al₂Cl₆ in solid state as well as in solution of non-polar solvents such as benzene. When dissolved in water, it gives
 - (1) Al³⁺ + 3Cl⁻

(2) $Al_2O_3 + 6HCI$

(3) $[AI(OH)_6]^{3}$

(D) $[AI(H_2O)_6]^{3+} + 3CI^{-}$

Ans. $[AI(H_2O)_6]^{3+} + 3CI^{-}$

		AIEEE-2004-7
119.		very low temperatures led in the humid air en in the air
Ans.	a change in the crystalline structure of tin	
120.	The E° _{M+3/M²+} values for Cr, Mn, Fe and Co respectively. For which one of these metals easiest? (1) Cr (3) Fe	are – 0.41, +1.57, + 0.77 and +1.97 V the change in oxidation state form +2 to +3 is (2) Co (4) Mn
Ans.	Cr	
121.	Excess of KI reacts with CuSO ₄ solution and the statements is incorrect for this reaction? (1) Cu ₂ I ₂ is reduced (3) Na ₂ S ₂ O ₃ is oxidized	d then Na ₂ S ₂ O ₃ solution is added to it. Which of (2) Evolved I ₂ is reduced (4) CuI ₂ is formed
Ans.	Cul ₂ is formed	
122.	Among the properties (a) reducing (b) oxidisty CN ⁻ ion towards metal species is (1) a, b (3) c, a	sing (c) complexing, the set of properties shown (2) a, b, c (4) b, c
Ans.	c, a	
123.	The coordination number of central metal atom in a complex is determined by (1) the number of ligands around a metal ion bonded by sigma bonds (2) the number of only anionic ligands bonded to the metal ion (3) the number of ligands around a metal ion bonded by sigma and pi- bonds both (4) the number of ligands around a metal ion bonded by pi-bonds	
Ans.	the number of ligands around a metal ion bonded by sigma	
124.	Which one of the following complexes in an (1) [Fe(CN) ₆] ⁴⁻ (3) [Co(NH ₃) ₆] ³⁺	outer orbital complex? (2) [Ni(NH ₃) ₆] ²⁺ (4) [Mn(CN) ₆] ⁴⁻
Ans.	[Ni(NH ₃) ₆] ²⁺	

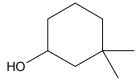
125. Coordination compound have great importance in biological systems. In this context which of the following statements is incorrect?

- (1) Chlorophylls are green pigments in plants and contains calcium
 (2) Carboxypeptidase A is an enzyme and contains zinc
 (3) Cyanocobalamin is B₁₂ and contains cobalt
 (4) Haemoglobin is the red pigment of blood and contains iron

Ans.	Chlorophylls are green pigments in plants a	and contains calcium
126.	Cerium (Z = 58) is an important member of statements about cerium is incorrect? (1) The common oxidation states of cerium (2) Cerium (IV) acts as an oxidizing agent (3) The +4 oxidation state of cerium is not k (4) The +3 oxidation state of cerium is more	are +3 and +4
Ans.	The +4 oxidation state of cerium is not known in solutions	
127.	Which one the following has largest number (1) $[Ru(NH_3)_4Cl_2^+]$ (3) $[Ir(PR_3)_2 H(CO)]^{2+}$ (R -= alkyl group, en = ethylenediamine)	of isomers? (2) $[Co(en)_2Cl_2]^+$ (4) $[Co(NH_3)_5Cl]^{2+}$
Ans.	$[Co(en)_2Cl_2]^+$	
128.	The correct order of magnetic moments (spin (1) $[MnCl_4]^{2^-} > [CoCl_4]^{-2} > [Fe(CN)_6]^{-4}$ (3) $[Fe(CN)_6]^{4^-} > [MnCl_4]^{2^-} > [CoCl_4]^{2^-}$ (Atomic numbers: Mn = 25; Fe = 26, Co =27)	(2) $[Fe(CN)_6]^{-4} > [CoCl_4]^{2-} > [MnCl_4]^{2-}$ (4) $[MnCl_4]^{2-} > [Fe(CN)_6]^{4-} > [CoCl_4]^{2-}$
Ans.	$[MnCl_4]^{2-} > [CoCl_4]^{-2} > [Fe(CN)_6]^{-4}$	
129.	Consider the following nuclear reactions $^{238}_{92}\text{M} \rightarrow^{\times}_{y}\text{N} +^{4}_{2}\text{He}$ $^{\times}_{y}\text{N} \rightarrow^{A}_{B}\text{L} + 2\beta^{+}$ The number of neutrons in the element L is (1) 142 (3) 140	(2) 146 (4) 144
Ans.	144	
130.	The half – life of a radioisotope is four hours mass remaining after 24 hours undecayed is (1) 1.042 g (3) 3.125 g	s. If the initial mass of the isotope was 200 g, the s (2) 4.167 g (4) 2.084 g
Ans.	3.125 g	
131.	The compound formed in the positive test for organic compound is (1) Fe ₄ [Fe(CN) ₆] ₃ (3) Fe(CN) ₃	or nitrogen with the Lassaigne solution of an (2) Na ₄ [Fe(CN) ₅ NOS] (4) Na ₃ [Fe(CN) ₆]
Ans.	$Fe_4[Fe(CN)_6]_3$	
132.	The ammonia evolved from the treatment of 0.30 g of an organic compound for the estimation of nitrogen was passed in 100 mL of 0.1 M sulphuric acid. The excess of acid required 20 mL of 0.5 M sodium hydroxide solution hydroxide solutio for complete neutralization. The organic compound is (1) acetamide (2) thiourea (3) urea (4) benzamide	

Ans. urea

- 133. Which one of the following has the minimum boiling point?
 - (1) n-butane


(2) isobutane

(3) 1- butene

(4) 1- butyne

Ans. isobutane

134. The IUPAC name of the compound

- (1) 3, 3- dimethyl -1- hydroxy cyclohexane (2) 1,1 dimethyl -3- cyclohexanol
- (3) 3,3- dimethyl -1- cyclohexanol
- (4) 1,1 dimethyl -3- hydroxy cyclohexane

Ans. 3,3- dimethyl -1- cyclohexanol

- Which one the following does not have sp² hybridized carbon? 135.
 - (1) Acetone

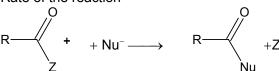
(2) Acetamide

(3) Acetonitrile

(4) Acetic acid

Ans. Acetonitrile

- 136. Which of the following will have meso-isomer also?
 - (1) 2- chlorobutane


(2) 2- hydroxyopanoic acid

(3) 2,3 – dichloropentane

(4) 2-3- dichlorobutane

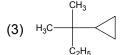
Ans. 2-3- dichlorobutane

Rate of the reaction 137.

is fastest when Z is

(1) CI

(2) OCOCH₃


(3) OC₂H₅

(4) NH₂

Ans. CI

- 138. Amongst the following compound, the optically active alkane having lowest molecular mass
 - H₃C CH₃

(2)≷cн

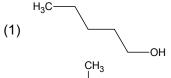
(4)

Ans.
$$H_3C$$
 C_2H_5

139.	Consider the acidity of the carboxylic acids: (1) PhCOOH (3) $p - NO_2C_6H_4COOH$	(2) $o - NO_2C_6H_4COOH$ (4) $m - NO_2C_6H_4COOH$
Ans.	$O - NO_2C_6H_4COOH$	
140.	Which of the following is the strongest base (1) NH ₂ NH ₂ CH ₃	(2) NH ₂ (4) CH ₃
Ans.	NH ₂	
141.	Which base is present in RNA but not in DN (1) Uracil (3) Guanine	IA? (2) Thymine (4) Cytosine
Ans.	Uracil	
142.	The compound formed on heating chlorobe sulphuric acid is (1) gammexene (3) Freon	enzene with chloral in the presence concentrated (2) hexachloroethane (4) DDT
Ans.	DDT	
143.	On mixing ethyl acetate with aqueous so solution is (1) CH ₃ COOC ₂ H ₅ + NaCl (3) CH ₃ COCl + C ₂ H ₅ OH + NaOH	odium chloride, the composition of the resultant (2) $CH_3CI + C_2H_5COONa$ (4) $CH_3COONa + C_2H_5OH$
Ans.	CH ₃ COOC ₂ H ₅ + NaCl	
144.	Acetyl bromide reacts with excess of CH ₃ M of NH ₄ Cl given (1) acetone (3) 2- methyl -2- propanol	gl followed by treatment with a saturated solution (2) acetyl iodide (4) acetamide
Ans.	2- methyl -2- propanol	
145.	Which one of the following reduced with zin hydrocarbon? (1) Ethyl acetate (3) Acetamide	c and hydrochloric acid to give the corresponding (2) Butan -2-one (4) Acetic acid

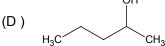
Ans. Butan -2-one

- 146. Which of the following undergoes reaction with 50% sodium hydroxide solution to give the corresponding alcohol and acid?
 - (1) Phenol

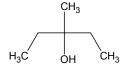

(2) Benzoic acid

(3) Butanal

(4) Benzaldehyde


Ans. Benzaldehyde

147. Among the following compound which can be dehydrated very easily is



(2) H_3C OH OH

(3) H₃C OH CH₃

Ans.

- 148. Which of the following compound is not chiral?
 - (1) 1- chloropentane

- (2) 3-chloro-2- methyl pentane
- (3) 1-chloro -2- methyl pentane
- (4) 2- chloropentane

Ans. 1- chloropentane

- 149. Insulin production and its action in human body are responsible for the level of diabetes. This compound belongs to which of the following categories?
 - (1) A co- enzyme

(2) An antibiotic

(3) An enzyme

(4) A hormone

Ans. A hormone

- 150. The smog is essentially caused by the presence of
 - (1) O_2 and O_3

(2) O_3 and N_2

(3) Oxides of sulphur and nitrogen

(4) O_2 and N_2

Ans. Oxides of sulphur and nitrogen

76.

SOLUTIONS (AIEEE)

80. (3)

(3)

81.

77.

78. (3) 79. (1)

84. (3) (1)

(4)

82. (2) 83. (4)

85. (4) 86. (3) 87. (2)

88. (3) 89. (2) 90. (1) 91. (2)

92. (3) 93. (2) 94. (4) 95. (3)

96. (2) 97. (4) 98. (2) 99. (4)

100. (1) 101. (4) 102. (1)

103. (2)

104. (1) 105. (4) 106. (2)

107. (3)

108. (2)

110. (2) 111. (1)

112. (3) 109. (3)

115. (3)

113. (1)

(2) 114.

116. (3) 117. (1) 118. (4) 119. (4)

120. (1) 121. (4) 122. (3)

123. (1)

124. (2) 125. (1)

126. (3) 127. (2)

128. (1) 129. (4) 130. (3)

131. (1)

132. (3) 133. (2) 134. (2) 135. (3)

136. (4) 137. (1)

138.

140. (2) 141. (1) (3)

139. (2)

142. (4)

150.

143. (1)

144. (3)

(1)

145. (2)

(4)

149.

146. (4)

(3)

147. (3)

SOLUTION

148.

76. $4f \longrightarrow n = 4$ I = 3m = -1 to + 1- 3 to +3

 $24 \longrightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^5$ 77. $I = 1 \rightarrow p \longrightarrow 12$ $I = 2 \rightarrow d \longrightarrow 5$

78.

 Li^{+}

 $\mathsf{F}^{\scriptscriptstyle{\mathsf{-}}}$

O⁻²

 B^{+3}

79.
$$\frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$
$$= 1.097 \times 10^7 \left(\frac{1}{1} \right)$$
$$\lambda = \frac{1}{1.097} \times 10^{-7} \text{m}$$

$$\begin{array}{cccc} 80. & H_2S \longrightarrow & sp^3 \\ & NH_3 \longrightarrow & sp^3 \\ & BF_3 \longrightarrow & sp^2 \\ & SiH_4 \longrightarrow & sp^3 \end{array}$$

- 82. Al, Si, P, S acidity of oxides increases
- 83. Bond order of NO = 2.5

 Bond order of NO⁺ = 3

 Higher the bond order shorter is the bond length
- 84. $O^{-1}(g) + e \longrightarrow O^{-2}(g)$ Due to the electronic repulsion, amount of the energy is needed to add electron
- 86. Total no of valence electrons = 3+7×4+1 = 32 Total No of hybrid orbital = 4 ∴ Hybridisation = sp³

88.
$$\frac{E_{1}}{E_{2}} = \frac{T_{1}}{T_{2}}$$

$$\frac{E_{1}}{E_{2}} = \frac{293}{313}$$

$$\therefore \text{ factor } = \frac{313}{293}$$

- 89. sp³d² hybridisation confirms to octahedral or square bipyramidal configuration
 ∴ all the bond angles are 90° in the structure
- 90. Von't Hoffs factor (i) for Na_2SO_4 is maximum i.e. 3(maximum no of particles) $Na_2SO_4 \longrightarrow 2Na^+ + SO_4^-$
- 92. In Vander Waals equation 'b' is the excluded volume i.e. the volume occupied by the molecules

93.
$$\therefore 6.02 \times 10^{+20}$$
 molecules of urea is present in = $\frac{0.0001 \times 1000}{100} = 0.01$ M

95. No. of gm equivalents of phosphorous acid = No. of gm equivalents of KOH $20\times0.1\times2$ (n = factor) = $0.1\times V$ = $0.1\times V$

$$V = \frac{4}{0.1} = 40 \,\text{ml}$$

- 96. ∴ the molecular weight of C₂H₅OH & CH₃OCH₃ are same so in its vapour phase at same temperature & pressure the densities will be same
- 97. Benzene in methanol breaks the H bonding of the alcohol making its boiling point decrease & there by its vapour pressure increases leading two +ve deviation.

100. Work done = -P(
$$\Delta$$
V)
= -1×10⁵ [10⁻² - 10⁻³] = -900 J

- 102. $t_{1/2}$ = 15 minutes ∴ No. of half lives s =2 (∴ for change of 0.1 to 0.025) is 30 minutes
- 103. Applying law of mass action
- 104. Kp = Kc $(RT)^{\Delta n}$
- 105. As per property of equilibria reverse the equation & divide it by 2

107.
$$E_{cell} = E_{RHS}^{\circ} - E_{LHS}^{\circ}$$

= (0.77) - (-0.14)
= 0.91 V

108. Ksp =
$$108s^5$$

 $1 \times 4^4 \times s^{1+4} = 256 s^5 = Ksp$

109.
$$\therefore \log K_{eq} = \frac{nE^{\circ}}{0.0591} = \frac{1 \times 0.591}{0.0591}$$

 $\Rightarrow K_{eq} = 10^{10}$

110.
$$C + O_2 \longrightarrow CO_2$$
 $\Delta H = -393.5 \text{ kJ}$
 $2CO + \frac{1}{2}O_2 \longrightarrow 2CO_2$ $\Delta H = -283 \text{ kJ}$
 $2C + O_2 \longrightarrow 2CO$ $\Delta H = -110 \text{ kJ}$

111.
$$\Lambda_{NaCI}^{\circ} = \lambda_{Na}^{\circ} + \lambda_{CI}^{\circ} = 126 \dots (1)$$

$$\Lambda_{KBr}^{\circ} = \lambda_{K^{+}}^{\circ} + \lambda_{Br^{-}}^{\circ} = 152 \qquad \dots (2)$$

$$\Lambda_{KCI}^{\circ} = \lambda_{K^{+}}^{\circ} + \lambda_{CI^{-}}^{\circ} = 150 \qquad \dots (3)$$

$$\Lambda_{NaBr}^{\circ} = \lambda_{Na}^{\circ} + \lambda_{Br^{-}}^{\circ}$$

$$\Lambda_{NaBr}^{\circ} = 126 + 152 - 150 = 128$$

- 115. $Mg_3N_2 + 6H_2O \longrightarrow 3Mg(OH)_2 + 2NH_3$
- 117. : Be & Al have diagonal relationship & so possess similar properties but Be cannot form polymeric hydrides
- 120. : oxidation of potential of Cr is least & so it changes easily from +2 to +3 state

121. 2 CuSO₄ + 4KI (excess)
$$\longrightarrow$$
 2K₂SO₄ + Cu₂ I₂ + I₂ \uparrow

$$Na_2S_2O_3 + I_2 \longrightarrow Na_2S_4O_6 + 2NaI$$

- 124. sp³d² ∴ outer orbital octahedral complex
- 125. Chlorophyll contains magnesium instead of calcium
- 126. Oxidation potential of Ce(IV) in aqueous solution is supposed to be –ve i.e. -0.784 V at 25°C

130.
$$2^6 = \frac{200}{a - x}$$

(a - x) = 3.125 gm

- 135. It is having only sp³ & sp hybridized carbon atom
- 136. CH₃
 H—CI plane symmetry
 CH₂
- 137. Rate of reaction will be fastest when Z is CI because it is a weakest base
- 138. H₃C C₂H₅
- 146. Benzaldehyde does not contain α hydrogen. Hence goes for cannizarro's reaction forming alcohol and acid
- 147.

 CH₃

 H₃C

 OH

 CH₃

 Tertiory alcohols will undergo more easily dehydration than secondary & primary

149. Insulin